| 1 | showing $a+b+c=6$ o.e <br> $b c=\frac{9^{2}-17}{16}$ | 1 <br> M1 | simple equiv fraction eg 192/32 or 24/4 <br> correct expansion of numerator; may be <br> unsimplified 4 term expansion; M0 if get <br> no further than $(\sqrt{17})^{2} ;$ M0 if no <br> evidence before 64/16 o.e. |
| :--- | :--- | :--- | :--- | :--- |
| $=64 / 16$ o.e. correctly obtained |  |  |  |
| completion showing $a b c=6$ o.e. |  |  |  |$\quad$ A1 | A1 | may be implicit in use of factors in <br> completion |
| :--- | :--- |


| 2 | (i) $a^{5} b^{3}$ as final answer <br> (ii) $\frac{(x+2)(x-2)}{(x-2)(x-3)}$ <br> $\frac{x+2}{x-3}$ as final answer | 2 <br> M2 <br> A1 | 1 for 2 'terms' correct in final answer <br> M1 for each of numerator or denom. correct or M1, M1 for correct factors seen separately | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | correct expansion of both brackets seen (may be unsimplified), or difference of squares used $4 m^{2} \text { correctly obtained }$ $[p=][ \pm] 2 m \text { сао }$ | M2 <br> A1 <br> A1 | M1 for one bracket expanded correctly; for M2, condone done together and lack of brackets round second expression if correct when we insert the pair of brackets | 4 |



| $\mathbf{5}$ |  | $(x-3.5)^{2}-6.25$ | 3 | B1 for $a=7 / 2$ o.e, <br> B2 for $b=-25 / 4$ o.e. or M1 <br> for $6-(7 / 2)^{2}$ or $6-(\text { their } a)^{2}$ | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ii | iii <br> $(3.5,-6.25)$ o.e. or ft from <br> their (i) <br> $(0,6)(1,0)(6,0)$ <br> iv <br> curve of correct shape <br> fully correct intns and min in <br> th quadrant <br> $x^{2}-7 x+6=x^{2}-3 x+4$ <br> $2=4 x$ <br> $1+1$ G1 <br> allow $x=3.5$ and $y=-6.25$ or  <br> ft; allow shown on graph  <br> 1 each [stated or numbers  <br> shown on graph]  | 2 |  |  |  |


| Question |  |  Answer <br> $x=4$  <br> $(4,-3)$  | Marks <br> B1 <br> B1 <br> [2] | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (i) |  |  | or $x=4, y=-3$ | condone 4, -3 |
| 6 | (ii) | $(0,13)$ isw <br> $[$ when $y=0,](x-4)^{2}=3$ <br> $[x=] 4 \pm \sqrt{3}$ or $\frac{8 \pm \sqrt{12}}{2}$ isw | 1 <br> M1 <br> A2 <br> [4] | or [when $x=0$ ], $y=13$ isw <br> 0 for just $(13,0)$ or $(k, 13)$ where $k \neq 0$ or $x^{2}-8 x+13[=0]$ <br> need not go on to give coordinate form <br> A1 for one root correct | annotate this question if partially correct <br> may be implied by correct value(s) for $x$ found <br> allow M1 for $y=x^{2}-8 x+13$ only if they go on to find values for $x$ as if $y$ were 0 |
| 6 | (iii) | replacement of $x$ in their eqn by $(x-2)$ <br> completion to given answer $y=x^{2}-12 x+33$, showing at least one correct interim step | M1 <br> A1 <br> [2] | may be simplified; eg $[y=](x-6)^{2}-3$ <br> or allow M1 for $(x-6-\sqrt{3})(x-6+\sqrt{3})$ [ $=0$ or $y$ ] <br> cao; condone using $\mathrm{f}(x-2)$ in place of $y$ | condone omission of ' $y=$ ' for M1, but must be present in final line for A1 |


| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (iv) | $\begin{aligned} & x^{2}-12 x+33=8-2 x \text { or } \\ & (x-6)^{2}-3=8-2 x \end{aligned}$ | M1 | for equating curve and line; correct eqns only; or for attempt to subst $(8-y) / 2$ for $x$ in $y=x^{2}-12 x+33$ | annotate this question if partially correct |
|  |  | $x^{2}-10 x+25=0$ | M1 | for rearrangement to zero, condoning one error such as omission of ' $=0$ ' |  |
|  |  | $(x-5)^{2}[=0]$ | A1 | or showing $b^{2}=4 a c$ | allow $\frac{10 \pm \sqrt{0}}{2}$ oe if $b^{2}-4 a c=0$ is not used explicitly <br> A0 for $(x-5)^{2}=y$ |
|  |  | $x=5$ www [so just one point of contact] | A1 | may be part of coordinates $(5, k)$ | allow recovery from $(x-5)^{2}=y$ |
|  |  | point of contact at $(5,-2)$ | A1 | dependent on previous A1 earned; allow for $y=-2$ found |  |
|  |  | alt. method | or |  | examiners: use one mark scheme or the other, to the benefit of the candidate if both methods attempted, but do not use a mixture of the schemes |
|  |  | for curve, $y^{\prime}=2 x-12$ | M1 |  |  |
|  |  | $2 x-12=-2$ | M1 | for equating their $y^{\prime}$ to -2 |  |
|  |  | $x=5$, and $y$ shown to be -2 using eqn to curve | A1 |  |  |
|  |  | tgt is $y+2=-2(x-5)$ | A1 |  |  |
|  |  |  | A1 |  | condone no further interim step if all working in this part is correct so far |
|  |  |  | [5] |  |  |


| 7 | (i) | translation <br> by $\binom{-4}{0}$ or 4 [units] to left | B1 | 0 for shift/move |
| :--- | :--- | :--- | :---: | :--- |
| B1 | or 4 units in negative $x$ direction o.e. |  |  |  |
| $\mathbf{7}$ | (ii) | sketch of parabola right way up and <br> with minimum on negative $y$-axis | B1 | mark intent for both marks |
| min at (0, -4) and graph through -2 <br> and 2 on $x$-axis | B1 | must be labelled or shown nearby |  |  |

